Transformation Unaryops#
- group transformation_unaryops
Enums
-
enum class rounding_method : int32_t#
Different rounding methods for
cudf::round
Info on HALF_EVEN rounding: https://en.wikipedia.org/wiki/Rounding#Rounding_half_to_even Info on HALF_UP rounding: https://en.wikipedia.org/wiki/Rounding#Rounding_half_away_from_zero Note: HALF_UP means up in MAGNITUDE: Away from zero! Because of how Java and python define it
Values:
-
enumerator HALF_UP#
-
enumerator HALF_EVEN#
-
enumerator HALF_UP#
-
enum class unary_operator : int32_t#
Types of unary operations that can be performed on data.
Values:
-
enumerator SIN#
Trigonometric sine.
-
enumerator COS#
Trigonometric cosine.
-
enumerator TAN#
Trigonometric tangent.
-
enumerator ARCSIN#
Trigonometric sine inverse.
-
enumerator ARCCOS#
Trigonometric cosine inverse.
-
enumerator ARCTAN#
Trigonometric tangent inverse.
-
enumerator SINH#
Hyperbolic sine.
-
enumerator COSH#
Hyperbolic cosine.
-
enumerator TANH#
Hyperbolic tangent.
-
enumerator ARCSINH#
Hyperbolic sine inverse.
-
enumerator ARCCOSH#
Hyperbolic cosine inverse.
-
enumerator ARCTANH#
Hyperbolic tangent inverse.
-
enumerator EXP#
Exponential (base e, Euler number)
-
enumerator LOG#
Natural Logarithm (base e)
-
enumerator SQRT#
Square-root (x^0.5)
-
enumerator CBRT#
Cube-root (x^(1.0/3))
-
enumerator CEIL#
Smallest integer value not less than arg.
-
enumerator FLOOR#
largest integer value not greater than arg
-
enumerator ABS#
Absolute value.
-
enumerator RINT#
Rounds the floating-point argument arg to an integer value.
-
enumerator BIT_INVERT#
Bitwise Not (~)
-
enumerator NOT#
Logical Not (!)
-
enumerator SIN#
Functions
-
std::unique_ptr<column> round(column_view const &input, int32_t decimal_places = 0, rounding_method method = rounding_method::HALF_UP, rmm::mr::device_memory_resource *mr = rmm::mr::get_current_device_resource())#
Rounds all the values in a column to the specified number of decimal places.
cudf::round
currently supports HALF_UP and HALF_EVEN rounding for integer, floating point anddecimal32
anddecimal64
numbers. Fordecimal32
anddecimal64
numbers, negatednumeric::scale
is equivalent todecimal_places
.Example:
using namespace cudf; column_view a; // contains { 1.729, 17.29, 172.9, 1729 }; auto result1 = round(a); // { 2, 17, 173, 1729 } auto result2 = round(a, 1); // { 1.7, 17.3, 172.9, 1729 } auto result3 = round(a, -1); // { 0, 20, 170, 1730 } column_view b; // contains { 1.5, 2.5, 1.35, 1.45, 15, 25 }; auto result4 = round(b, 0, rounding_method::HALF_EVEN); // { 2, 2, 1, 1, 15, 25}; auto result5 = round(b, 1, rounding_method::HALF_EVEN); // { 1.5, 2.5, 1.4, 1.4, 15, 25}; auto result6 = round(b, -1, rounding_method::HALF_EVEN); // { 0, 0, 0, 0, 20, 20};
- Parameters:
input – Column of values to be rounded
decimal_places – Number of decimal places to round to (default 0). If negative, this specifies the number of positions to the left of the decimal point.
method – Rounding method
mr – Device memory resource used to allocate the returned column’s device memory
- Returns:
Column with each of the values rounded
-
std::unique_ptr<cudf::column> unary_operation(cudf::column_view const &input, cudf::unary_operator op, rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::mr::device_memory_resource *mr = rmm::mr::get_current_device_resource())#
Performs unary op on all values in column.
Note: For
decimal32
anddecimal64
, onlyABS
,CEIL
andFLOOR
are supported.- Parameters:
input – A
column_view
as inputop – operation to perform
stream – CUDA stream used for device memory operations and kernel launches
mr – Device memory resource used to allocate the returned column’s device memory
- Returns:
Column of same size as
input
containing result of the operation
-
std::unique_ptr<cudf::column> is_null(cudf::column_view const &input, rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::mr::device_memory_resource *mr = rmm::mr::get_current_device_resource())#
Creates a column of
type_id::BOOL8
elements where for every element ininput
true
indicates the value is null andfalse
indicates the value is valid.- Parameters:
input – A
column_view
as inputstream – CUDA stream used for device memory operations and kernel launches
mr – Device memory resource used to allocate the returned column’s device memory
- Returns:
A non-nullable column of
type_id::BOOL8
elements withtrue
representingnull
values.
-
std::unique_ptr<cudf::column> is_valid(cudf::column_view const &input, rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::mr::device_memory_resource *mr = rmm::mr::get_current_device_resource())#
Creates a column of
type_id::BOOL8
elements where for every element ininput
true
indicates the value is valid andfalse
indicates the value is null.- Parameters:
input – A
column_view
as inputstream – CUDA stream used for device memory operations and kernel launches
mr – Device memory resource used to allocate the returned column’s device memory
- Returns:
A non-nullable column of
type_id::BOOL8
elements withfalse
representingnull
values.
-
std::unique_ptr<column> cast(column_view const &input, data_type out_type, rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::mr::device_memory_resource *mr = rmm::mr::get_current_device_resource())#
Casts data from dtype specified in input to dtype specified in output.
Supports only fixed-width types.
- Parameters:
input – Input column
out_type – Desired datatype of output column
stream – CUDA stream used for device memory operations and kernel launches
mr – Device memory resource used to allocate the returned column’s device memory
- Throws:
cudf::logic_error – if
out_type
is not a fixed-width type- Returns:
Column of same size as
input
containing result of the cast operation
-
std::unique_ptr<column> is_nan(cudf::column_view const &input, rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::mr::device_memory_resource *mr = rmm::mr::get_current_device_resource())#
Creates a column of
type_id::BOOL8
elements indicating the presence ofNaN
values in a column of floating point values. The output element at rowi
istrue
if the element ininput
at row i isNAN
, elsefalse
- Throws:
cudf::logic_error – if
input
is a non-floating point type- Parameters:
input – A column of floating-point elements
stream – CUDA stream used for device memory operations and kernel launches
mr – Device memory resource used to allocate the returned column’s device memory
- Returns:
A non-nullable column of
type_id::BOOL8
elements withtrue
representingNAN
values
-
std::unique_ptr<column> is_not_nan(cudf::column_view const &input, rmm::cuda_stream_view stream = cudf::get_default_stream(), rmm::mr::device_memory_resource *mr = rmm::mr::get_current_device_resource())#
Creates a column of
type_id::BOOL8
elements indicating the absence ofNaN
values in a column of floating point values. The output element at rowi
isfalse
if the element ininput
at row i isNAN
, elsetrue
- Throws:
cudf::logic_error – if
input
is a non-floating point type- Parameters:
input – A column of floating-point elements
stream – CUDA stream used for device memory operations and kernel launches
mr – Device memory resource used to allocate the returned column’s device memory
- Returns:
A non-nullable column of
type_id::BOOL8
elements withfalse
representingNAN
values
-
enum class rounding_method : int32_t#