API Reference#
The two main components to cuxfilter are DataFrame for connecting the dashboard to a cuDF backed dataframe, and Dashboard for setting dashboard options.
DataFrame#
- class cuxfilter.dataframe.DataFrame(data)#
A cuxfilter GPU DataFrame object
- Attributes:
- data
- edges
Methods
dashboard
(charts[, sidebar, layout, theme, ...])Creates a cuxfilter.DashBoard object
from_arrow
(dataframe_location)read an arrow file from disk as cuxfilter.DataFrame
from_dataframe
(dataframe)create a cuxfilter.DataFrame from cudf.DataFrame/dask_cudf.DataFrame (zero-copy reference)
load_graph
(graph)create a cuxfilter.DataFrame from cudf.DataFrame/dask_cudf.DataFrame (zero-copy reference) from a graph object
preprocess_data
validate_dask_index
- dashboard(charts: list, sidebar: list = [], layout=<class 'cuxfilter.layouts.layouts.Layout0'>, theme=<class 'cuxfilter.themes.default.LightTheme'>, title='Dashboard', data_size_widget=True, warnings=False, layout_array=None)#
Creates a cuxfilter.DashBoard object
- Parameters:
- charts: list
list of cuxfilter.charts
- layout: cuxfilter.layouts
- theme: cuxfilter.themes, default cuxfilter.themes.default.
- title: str
title of the dashboard, default “Dashboard”
- data_size_widget: boolean
flag to determine whether to diplay the current datapoints selected in the dashboard, default True
- warnings: boolean
flag to disable or enable runtime warnings related to layouts, default False
- Returns:
- cuxfilter.DashBoard object
Examples
>>> import cudf >>> import cuxfilter >>> from cuxfilter.charts import bokeh >>> df = cudf.DataFrame( >>> { >>> 'key': [0, 1, 2, 3, 4], >>> 'val':[float(i + 10) for i in range(5)] >>> } >>> ) >>> cux_df = cuxfilter.DataFrame.from_dataframe(df) >>> line_chart_1 = bokeh.line( >>> 'key', 'val', data_points=5, add_interaction=False >>> )
>>> # create a dashboard object >>> d = cux_df.dashboard([line_chart_1])
- classmethod from_arrow(dataframe_location)#
read an arrow file from disk as cuxfilter.DataFrame
- Parameters:
- dataframe_location: str or arrow in-memory table
- Returns:
- cuxfilter.DataFrame object
Examples
Read dataframe as an arrow file from disk
>>> import cuxfilter >>> import pyarrow as pa
>>> # create a temporary arrow table >>> arrowTable = pa.Table.from_arrays([['foo', 'bar']], names=['name'])
>>> # read arrow table, can also ready .arrow file paths directly >>> cux_df = cuxfilter.DataFrame.from_arrow(df)
- classmethod from_dataframe(dataframe)#
create a cuxfilter.DataFrame from cudf.DataFrame/dask_cudf.DataFrame (zero-copy reference)
- Parameters:
- dataframe_location: cudf.DataFrame or dask_cudf.DataFrame
- Returns:
- cuxfilter.DataFrame object
Examples
Read dataframe from a cudf.DataFrame/dask_cudf.DataFrame
>>> import cuxfilter >>> import cudf >>> cudf_df = cudf.DataFrame( >>> { >>> 'key': [0, 1, 2, 3, 4], >>> 'val':[float(i + 10) for i in range(5)] >>> } >>> ) >>> cux_df = cuxfilter.DataFrame.from_dataframe(cudf_df)
- classmethod load_graph(graph)#
create a cuxfilter.DataFrame from cudf.DataFrame/dask_cudf.DataFrame (zero-copy reference) from a graph object
- Parameters:
- tuple object (nodes, edges) where nodes and edges are cudf DataFrames
- Returns:
- cuxfilter.DataFrame object
Examples
load graph from cugraph object
>>> import cuxfilter >>> import cudf, cugraph >>> edges = cudf.DataFrame( >>> { >>> 'source': [0, 1, 2, 3, 4], >>> 'target':[0,1,2,3,4], >>> 'weight':[4,4,2,6,7], >>> } >>> ) >>> G = cugraph.Graph() >>> G.from_cudf_edgelist(edges, destination='target') >>> cux_df = cuxfilter.DataFrame.load_graph((G.nodes(), G.edges()))
load graph from (nodes, edges)
>>> import cuxfilter >>> import cudf >>> nodes = cudf.DataFrame( >>> { >>> 'vertex': [0, 1, 2, 3, 4], >>> 'x':[0,1,2,3,4], >>> 'y':[4,4,2,6,7], >>> 'attr': [0,1,1,1,1] >>> } >>> ) >>> edges = cudf.DataFrame( >>> { >>> 'source': [0, 1, 2, 3, 4], >>> 'target':[0,1,2,3,4], >>> 'weight':[4,4,2,6,7], >>> } >>> ) >>> cux_df = cuxfilter.DataFrame.load_graph((nodes,edges))
DashBoard#
- class cuxfilter.dashboard.DashBoard(charts=[], sidebar=[], dataframe=None, layout=<class 'cuxfilter.layouts.layouts.Layout0'>, theme=<class 'cuxfilter.themes.default.LightTheme'>, title='Dashboard', data_size_widget=True, show_warnings=False, layout_array=None)#
A cuxfilter GPU DashBoard object. Examples ——–
Create a dashboard
>>> import cudf >>> import cuxfilter >>> from cuxfilter.charts import bokeh, panel_widgets >>> df = cudf.DataFrame( >>> {'key': [0, 1, 2, 3, 4], 'val':[float(i + 10) for i in range(5)]} >>> ) >>> cux_df = cuxfilter.DataFrame.from_dataframe(df) >>> line_chart_1 = bokeh.line( >>> 'key', 'val', data_points=5, add_interaction=False >>> ) >>> line_chart_2 = bokeh.bar( >>> 'val', 'key', data_points=5, add_interaction=False >>> ) >>> sidebar_widget = panel_widgets.card("test") >>> d = cux_df.dashboard(charts=[line_chart_1, line_chart_2], >>> sidebar=[sidebar_widget]) >>> d `cuxfilter DashBoard [title] Markdown(str) [chart0] Markdown(str, sizing_mode='stretch_both'), ['nav']) [chart1] Column(sizing_mode='scale_both', width=1600) [0] Bokeh(Figure) [chart2] Column(sizing_mode='scale_both', width=1600) [0] Bokeh(Figure)` >>> # d.app() for serving within notebook cell, >>> # d.show() for serving as a separate web-app >>> d.app() #or d.show() displays interactive dashboard
do some visual querying/ crossfiltering
- Attributes:
charts
Charts in the dashboard as a dictionary.
queried_indices
Read-only propery queried_indices returns a merged index of all queried index columns present in self._query_str_dict as a cudf.Series.
- server
Methods
add_charts
([charts, sidebar])Adding more charts to the dashboard, after it has been initialized.
app
([sidebar_width, width, height])Run the dashboard with a bokeh backend server within the notebook.
export
()Export the cudf.DataFrame based on the current filtered state of the dashboard.
show
([notebook_url, port, threaded, ...])Run the dashboard with a bokeh backend server within the notebook.
stop
()stop the bokeh server
- add_charts(charts=[], sidebar=[])#
Adding more charts to the dashboard, after it has been initialized.
- Parameters:
- charts: list
list of cuxfilter.charts objects
- sidebar: list
list of cuxfilter.charts.panel_widget objects
Notes
After adding the charts, refresh the dashboard app tab to see the updated charts. Charts of type widget cannot be added to sidebar but widgets can be added to charts(main layout)
Examples
>>> import cudf >>> import cuxfilter >>> from cuxfilter.charts import bokeh, panel_widgets >>> df = cudf.DataFrame( >>> { >>> 'key': [0, 1, 2, 3, 4], >>> 'val':[float(i + 10) for i in range(5)] >>> } >>> ) >>> cux_df = cuxfilter.DataFrame.from_dataframe(df) >>> line_chart_1 = bokeh.line( >>> 'key', 'val', data_points=5, add_interaction=False >>> ) >>> d = cux_df.dashboard([line_chart_1]) >>> line_chart_2 = bokeh.bar( >>> 'val', 'key', data_points=5, add_interaction=False >>> ) >>> d.add_charts(charts=[line_chart_2]) >>> # or >>> d.add_charts(charts=[], sidebar=[panel_widgets.card("test")])
- app(sidebar_width=280, width=1200, height=800)#
Run the dashboard with a bokeh backend server within the notebook.
- Parameters:
- sidebar_width: int, optional, default 280
width of the sidebar in pixels
- width: int, optional, default 1200
width of the dashboard in pixels
- height: int, optional, default 800
height of the dashboard in pixels
Examples
>>> import cudf >>> import cuxfilter >>> from cuxfilter.charts import bokeh >>> df = cudf.DataFrame( >>> { >>> 'key': [0, 1, 2, 3, 4], >>> 'val':[float(i + 10) for i in range(5)] >>> } >>> ) >>> cux_df = cuxfilter.DataFrame.from_dataframe(df) >>> line_chart_1 = bokeh.line( >>> 'key', 'val', data_points=5, add_interaction=False >>> ) >>> d = cux_df.dashboard([line_chart_1]) >>> d.app(sidebar_width=200, width=1000, height=450)
- property charts#
Charts in the dashboard as a dictionary.
- export()#
Export the cudf.DataFrame based on the current filtered state of the dashboard.
Also prints the query string of the current state of the dashboard.
- Returns:
- cudf.DataFrame based on the current filtered state of the dashboard.
Examples
>>> import cudf >>> import cuxfilter >>> from cuxfilter.charts import bokeh >>> df = cudf.DataFrame( >>> { >>> 'key': [0, 1, 2, 3, 4], >>> 'val':[float(i + 10) for i in range(5)] >>> } >>> ) >>> cux_df = cuxfilter.DataFrame.from_dataframe(df) >>> line_chart_1 = bokeh.line( >>> 'key', 'val', data_points=5, add_interaction=False >>> ) >>> line_chart_2 = bokeh.bar( >>> 'val', 'key', data_points=5, add_interaction=False >>> ) >>> d = cux_df.dashboard( >>> [line_chart_1, line_chart_2], >>> layout=cuxfilter.layouts.double_feature >>> ) >>> # d.app() for serving within notebook cell, >>> # d.show() for serving as a separate web-app >>> d.app() #or d.show() displays interactive dashboard
>>> queried_df = d.export() final query 2<=key<=4
- show(notebook_url='http://localhost:8888', port=0, threaded=False, service_proxy=None, sidebar_width=280, height=800, **kwargs)#
Run the dashboard with a bokeh backend server within the notebook.
- Parameters:
- notebook_url: str, optional, default localhost:8888
URL where you want to run the dashboard as a web-app,
including the port number.
Can use localhost instead of ip if running locally.
- port: int, optional
Has to be an open port
- service_proxy: str, optional, default None,
available options: jupyterhub
- threaded: boolean, optional, default False
whether to run the server in threaded mode
- sidebar_width: int, optional, default 280
width of the sidebar in pixels
- height: int, optional, default 800
height of the dashboard in pixels
- **kwargs: dict, optional
additional keyword arguments to pass to the server
Examples
>>> import cudf >>> import cuxfilter >>> from cuxfilter.charts import bokeh >>> df = cudf.DataFrame( >>> { >>> 'key': [0, 1, 2, 3, 4], >>> 'val':[float(i + 10) for i in range(5)] >>> } >>> ) >>> cux_df = cuxfilter.DataFrame.from_dataframe(df) >>> line_chart_1 = bokeh.line( >>> 'key', 'val', data_points=5, add_interaction=False >>> ) >>> d = cux_df.dashboard([line_chart_1]) >>> d.show(url='localhost:8889')
- stop()#
stop the bokeh server